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Field-Induced Percolation in a Polarized Lattice Gas 

Marc Aertsens I and Jan Naudts  2 

Received July 18, 1990; final October 10, 1990 

We introduce a lattice gas model with particles carrying a charge either + 1 or 
- 1  and drifting in opposite directions due to the presence of an external field. 
Our numerical simulations show the formation of polarized clusters elongated 
along the direction of the field. At low enough temperatures the clusters 
percolate through the system in a similar way as in the strip phase of the 
driven lattice gas model. A possible application of the model can be found in 
microemulsions. 

KEY WORDS: Driven lattice gas model; dynamic percolation, microemul- 
sions; nonequilibrium phase diagram. 

1. INTRODUCTION 

Lattice gas models under far-from-equilibrium conditions are of recent 
interest. Two distinct situations have been studied in detail. After a quench 
from the high-temperature gas phase into the low-temperature solid phase 
one observes nucleation and growth of particle aggregates. The interesting 
question here is how the system evolves toward equilibrium. In another 
scenario, the particles are assumed to drift in a given direction due to 
the presence of an external field. A model system in this case is the 
so-called driven lattice gas. I' Js~ A slightly different version is known as the 
van Beijeren/Schulman model  ~14'15) The relevant question is now how to 
characterize the stationary states. In particular, for a strong drift and at 
sufficiently low temperatures stationary states were observed in which the 
low- and high-density phases are separated into a regular repetition of 
strips (d=  2) or cylinders (d=  3) aligned along the direction of the external 
field. From now on we will refer to this phase as the strip phase. 

An obvious feature of the strip phase is the percolation of clusters of 
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particles along the direction of the field. An apparent consequence of the 
anisotropy introduced by the external field is that percolation can occur at 
particle densities which are too low for allowing percolation in the absence 
of the field. Marro and Vall6s ~7) have observed percolation during simula- 
tions on square lattice systems at density p = 0.20, while in the absence of 
the external field and in the gas phase percolation can ~6) only occur for 
p/> 0.50. In d = 3 on a simple cubic lattice the lowest density at which per- 
colation occurs in the gas phase is ~J7~18) p --. 0.22 at T=  0.967,_ We checked 
that in the presence of a strong field the strip phase exists even at a density 
of p = 0.08. 

In the present paper we study a model which is slightly more com- 
plicated than the driven lattice gas. Instead of letting all particles drift in 
the same direction, we consider particles carrying charges either + l or - 1 
and drifting in opposite directions. The reason for introducing the new 
model is twofold: (i) we conjecture that steric hindrance of particles all 
moving in the same direction is a dominant mechanism in the formation of 
the strip phase of the driven lattice gas; we are interested in a more gentle 
mechanism; for convenience we call it polarization of clusters of charged 
particles (although one could object the crippled analogy with real electric 
systems); (ii) from the point of view of physics, both kinds of systems are 
of interest; a nice experimental realization of a lattice gas with two types 
of charged particles is found in water-in-oil microemulsions, which are 
discussed below. 

Water-in.oil microemulsions consist of small nanometer-sized droplets 
suspended in liquid oil. The water droplets are electrically conductive and 
can be charged positively as well as negatively. Charges larger than +__ e are 
very unlikely at low density. (34) Application of an electric field leads to a 
drift of the charged droplets. They can be monitored by measuring the elec- 
tric current. It was observed that a slight increase in the concentration of 
droplets can raise the electric conductivity by several orders of magnitude. 
The phenomenon was explained as a percolation transitional9 23): a cluster 
of droplets connecting both electrodes carries a huge electric current 
because charges can easily hop from one droplet to the next. Complemen- 
tary information was obtained by means of Monte Carlo simulationsJ 25 29) 

The complicated dependence of the percolation transition on tem- 
perature, density, and electric field has given rise to much interest. Percola- 
tion thresholds as low as 0.08 volume fraction have been reportedJ t9"2~ 
Several arguments have been put forward t25 27) explaining why percolation 
occurs at densities well below the percolation threshold of about 0.35 
for percolation of randomly positioned nonoverlapping spheres in a 
continuum. ~3~ However, none of these have taken into account the effects 
of an external field. 
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Measurements at a volume fraction of about 25% of droplets show 
that the percolation transition depends on the field strength. (24) The 
anisotropy induced by the field has been confirmed by means of Kerr effect 
measurements. (3~) Clusters of particles are elongated in the direction of the 
field. The nonlinear field dependence of the electric current was explained 
in a phenomenological way (32) by an increased mobility for a combined 
conduction process in which charged droplets move back and forth 
between slightly polarized elongated clusters. We believe that those effects 
can be reproduced by the model presented here. However, the present 
study has been limited to that part of the phase diagram where the strip 
phase is observed. We are not yet able to compare with experiments on 
microemulsions. The conditions under which the percolation transition in 
water-in-oil microemulsions can be studied correspond to the gas phase of 
the model, close to the phase separation temperature. The strip phase 
occurs below the phase separation temperature. Hence it is not obvious 
wether the percolation transition observed experimentally is related to the 
formation of a strip phase. 

The model is introduced in Section 2. Details of the simulations are 
given in Section 3. The results are discussed in Section 4. Conclusions 
follow in Section 5. Some early results of our work have been published 
before. ~ 33) 

2. T H E  M O D E L  

We consider a lattice gas of particles each carrying a charge of either 
+ 1 or - 1. The total charge of the system is zero. From a static point of 
view the model can be considered as a diluted Ising model. Hence we 
assign to every site i of a simple cubic lattice two variables: t, and si. The 
variable ti is 1 if the site is occupied, and zero otherwise. The variable st 
represents the charge of the particle: st = _+1. In the absence of an electric 
field the Hamiltonian of the system is the usual lattice gas Hamiltonian 

H =  - 4 J  ~, titj (1) 
l i -  Jl = I 

where 4J is the nearest neighbor attraction between the particles. 
An electric field E is chosen parallel with the vertical z axis. The 

positive pole is put at z =  + ~ .  Hence, the formal Hamiltonian of the 
system in presence of the field reads 

H= -4J ~ tilj-~ E E liSiZi (2) 
l i - -  j [  = 1 i 

where z~ is the z coordinate of site i. If all charges have the same nonzero 
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value (either + 1 or - 1), the Hamiltonian (2) is that of the driven lattice 
gas. 

The choice of boundary conditions for the simulation of a finite system 
with Hamiltonian (2) poses serious problems, especially on the upper and 
lower edges of the system. An obvious choice consists of periodic boundary 
conditions in the x and y directions and fixed boundary conditions in the 
z direction. E.g., a layer of fixed particles at z = 0 and z = L leads to an 
accumulation of negative particles near the upper edge of the system, and 
positive particles near the lower edge. This can be prevented by turning all 
negative particles reaching the upper edge of the system into positive par- 
ticles, and similarly at the lower edge. Simulations under these conditions 
reveal important disturbances of the particle distribution near the upper 
and lower edges. Also, other choices of boundary conditions along the 
z direction were found not to be acceptable. 

We have opted for periodic boundary conditions also in the z direc- 
tion. Strictly, this choice is not compatible with (2) as a Hamiltonian, since 
the latter is not periodic in z. Indeed, when a negative particle disappears 
at the upper edge and reappears at the lower edge of the system, its poten- 
tial energy drops by the amount LE (where L is the height of the system~. 
Nevertheless, we can use (2) formally if arithmetic in z is performed 
modulo L, since only local differences (gradients) of H enter into the 
transition rates. 

Next we discuss the choice of dynamics. Two mechanism are 
implemented: one for particle motion and a separate one for charge 
exchange between neighboring particles. Both mechanisms use a coordina- 
tion number of 18, the usual nearest and next nearest neighbor positions 
of a simple cubic lattice. Hence, while according to Hamiltonian (2) par- 
ticles attract only between 6 neighboring positions, they can move to any 
empty site out of 18 neighboring sites. Similarly, a particle can exchange its 
charge with any particle on one of 18 neighboring sites. In this way we try 
to avoid steric hindrance elects. In the driven lattice gas particle jumps are 
only allowed to 6 nearest neighbors. We expect steric hindrance to be 
important then. The coordination number of 18 increases the possibility of 
motion along the direction of the field and avoids freezing of the system 
due to steric hindrance. 

The particles move according to Kawasaki dynamics. During one 
Monte Carlo step (MCS) each particle tries exactly once to move to a ran- 
domly chosen neighboring site. If the chosen site is occupied, the particle 
does not move. Otherwise, using (2), the change in energy is calculated 
and the move is accepted using the Metropolis criterion. Due to the 
particle-hole exchange the individual particles diffuse and the cluster 
configuration changes. 
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The algorithm for charge exchange is executed N times after each 
completion of the particle-hole exchange algorithm. For each particle a 
neighboring site is chosen randomly. If this site is empty or occupied with 
a particle bearing the same charge, nothing happens and one continues 
with the next particle. If both sites are occupied and have the same z coor- 
dinate, the charges are exchanged. Finally, if the z coordinates differ, the 
largest charge is placed with a probability 0.5 e x p ( -  E/kT) at the site with 
the largest z coordinate. In real microemulsions neutral particles do occur, 
but in the model they are not allowed. As a consequence of this simplifica- 
tion, the creation and annihilation of charges cannot occur. 

The charge exchange mechanism causes polarization of the clusters. 
When N~> 1 it results in a huge increase of the electric current at percola- 
tion. As in conductivity experiments, the point where the electrical current 
increases suddenly is taken to be the percolation treshold. The increase of 
the current is expected at the moment that a cluster appears spanning the 
system in the zdirection. Since charge hopping is allowed to 18 neigh- 
boring sites, the connectivity of a cluster is defined on the basis of the same 
coordination number of 18. Our use of different time scales for the particle 
motion and for the charge exchange leads to a dramatic increase of the 
numerical effort needed to simulate the model. Indeed, for N =  I, both 
mechanisms could be combined by allowing the exchange of particles 
together with the charge they carry. But at N =  1 there is not necessarily a 
huge increase of the electric current at percolation. Also, in the experimen- 
tal system (water-in-oil microemulsions) charge exchange between neigh- 
boring droplets is much faster than the diffusion of individual droplets. 

3. S I M U L A T I O N S  

We simulate a simple cubic lattice with size W• W• L and periodic 
boundary conditions in all directions. In most of our simulations the 
system length L is 20 and the width W is 15. 

The site percolation threshold for configurations with coordination 
number 18 is 13.7% (see ref. 38, Table I). The simulations reported below 
are executed for three different particle densities near the percolation 
treshold: p =0.08, p =0.12, and p=0.16. 

For simplicity we take 4 J =  1 everywhere. Since the effect of the 
electric field on the cluster shapes is most obvious below phase separation, 
almost all simulations are carried out in the latter region. Without an 
electric field, percolation is not possible for p = 0.08. Hence, in the simula- 
tions this density is studied most extensively because if percolation occurs, 
it can only be due to the electric field. 

The simulations are implemented as quenches from high to low tern- 
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perature. In the starting configuration the particles are distributed ran- 
domly on the lattice. In principle it might be better to thermalize first 
before switching on the external electric field. In order to save computer 
time the quenching procedure was chosen. 

Most simulations use N =  50. However, at low temperatures percola- 
tion can be easily detected at lower N ( N =  20 or N -  10), decreasing the 
amount of computer time. We checked that the change in N does not 
influence the cluster shapes or the configurations. 

The measured quantities are the electric current i, the probabilities n, 
and n: that a particle has a neighbor in the x or the z direction, respec- 
tively, and the anisotropy of the clusters. They are measured as a function 
of time, but averaged over at least 1000 MCS. 

For the current i, we subtract the number of charges moving against 
the field from those going with the field during one M('S. This quantity 
divided by the number of lattice sites is defined as the current i. 

The probabilities n,  and n= provide a simple way to determine the 
phase of the system. Indeed, in the condensed phase of the lattice gas both 
are high, since all particles are contained in one or a few compact clusters. 
In the gas phase both nx and n. have a low value. In addition, for n~ - n. 
the clusters are nearly isotropic, while for n: >> nx they are elongated in the 
z direction. 

An alternative quantity to measure the anisotropy of two-dimensional 
L x L  systems with density p=0 .5  has been introduced in refo6. A 
generalization to arbitrary density is 

1 
m = p ( l  -p - - - - - - ) ( (M2)  - ( M 2 ) )  (3) 

with 

)' 
M : =  z ~ ~ tx , . , . -p (4) 

and 

M:-- z x z 

The quantities M~ and M~ measure the inhomogeneity of the system by 
calculating the mean square deviation from uniform density when projected 
on the y, resp. x coordinate axes. The definitions (4) and (5) deviate by 
a constant from those of ref. 7. In definition (3) the square root has 
been omitted because ( M ~ ) - ( M ~ )  can be positive or negative. The 
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generalization to three-dimensional systems can be done in several ways. 
Because we consider a system size W x W x L and expect clusters elongated 
along the z axis, the obvious definition is 

where 

1 
m' - -  [ ( M ~ ) - O . 5 ( ( M 2 ~ )  + ( M ~ ) ) ]  (6) p(1 -p) 

= t~ ~ . - p  (7) 
W L  ,~ " . . . .  

~= wL L tx.y,~-p I8) 
~c ,z  

M2z = x2 " tx, y , ~ -  p (9) 

Clearly, the averages ( M 2 )  (where ~ = x ,  y, z) are zero, in the thermo- 
dynamic limit, for an isotropic homogeneous system. The combination 
M~-0.5(M2x + M~) should be zero for an isotropic cluster. However, this 
is only the case if L = W. Hence m' is a good measure for the anisotropy 
of the condensed phase provided the system is cubic (L = W) or for a 
nearly homogeneous system. 

Marro et al. ~4~ introduced a slightly different definition: 

! 
m" = ( M  2 _ M jz)~/2 (10) 

2[p(l - p ) ] ~ / ~  " 

with 

and 

M~= w--~ ~ y t , . , : - I  (ll) 
, ' z 

1 ( 2  )2 
Mh 2 = ~  ~ ~-5 ~ tx, y,z-- 1 (12) 

�9 7 X ,  y 

Although the quantity m" increases when a cluster elongates in the z direc- 
tion, it does not really measure anisotropy. Indeed, from the inequality 

Mo=w2Zv Ztx, v,z-1 

>~-~ ~ ~ tx, v,~-- I (13) 
V. 2 
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it follows that for L =  W and a cubic invariant configuration one has 
M 2/> M 2. The equality holds only if the density is zero or one. Hence m'* 
is strictly positive for isotropic clusters, even when L = HI. 

4. SIMULATION RESULTS 

4.1. Cluster Configurations and Time Evolution 

At high temperatures the system is in the gas phase for all values of 
the electric field. Below some (field and density dependent) transition tem- 
perature three types of stationary states occur. At zero or low field the 
clusters are compact and nearly isotropic, as shown in Fig. t a. Increasing 
the field causes elongation of the clusters. Above a field E~(p, T) this leads 
to a percolating cluster spanning the system between the two poles 
(Fig. ib). Finally, for fields larger than some field E2(p, T) our simulations 
show a particle distribution like that in Fig. lc. The configuration is about 
isotropic and similar to the configurations above the transition temperature 
at zero field. 

The time evolution leading to configurations such as those in Figs. l a 
and l b is shown in Fig. 2 for three different field strengths at about the 
same temperature. Right after the quench the system condenses and 
approximately isotropic clusters are formed. For strong fields these clusters 
elongate immediately. As the electric field decreases, the elongation process 
takes more time. Near El(p, T) one has to wait a long time before n:, nx, 
m', and m" reach a final value. Note that the evolution of the system 
toward the stationary state is rather continuous. 

For fields slightly smaller than E2(p, T) one observes an interesting 
effect. There is an immediate but small elongation. Some time later the 
parameters n~, n,, m', and m" suddenly change and percolation sets in (see 
Fig. 3). A delayed abrupt change of the parameter m" occurs for similar 
densities and strong fields E--, oo in the two-dimensional driven lattice gas 
(see Fig. 3 in ref. 7). In the polarized lattice gas, the discontinuous behavior 
is observed only for fields lying in a narrow interval just below E2(p, T). 

We checked that after turning off the field a percolating cluster as in 
Fig. lb disappears and the system becomes isotropic again (see Fig. 4). The 
figure illustrates also that for lower temperatures it takes longer to reach a 
stationary state. As an alternative one might replace the thermal quench 
procedure by the heating of a single-component strip containing all the 
particles. 16"7~ We have not performed such simulations. 

The time evolution of the electric current is shown in Fig. 5 for the 
same parameters as in Fig. 2. From comparison with Fig. 2, it is obvious 
that the electric current and the elongation are closely related. For suf- 
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(c) 
Fig. I. Three-dimensional view of a parlicle configuration. (a) At E =  0, k T =  0.60, p = 0.08, 
/ 2tXXX) M('S, in a 15x 15• system; Ib) at 1','-{).15, k ' / '= 0.60, p =0.08, t =21~XX) MCS, 
in a 1 5 x l 5 x 4 ( ) s y s t e m , ( c ) a t  E=0.90, k'/ '=0.60, p=().08, / = I 8 0 0 0 M C S ,  in a 15x15x20  
system. 
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Fig. 2. Probability n:  that a particle has a neighbor in the positive z direction. The simula- 
tions are done on a 15 x 15 x 20 system with p = 0.08 and different values of the temperature 
and the electric field: k T = 0 . 4 5  and E=0 .025  ( ), k T = 0 4 0  and E=0 .125  ( - ) ,  and 
k T = 0 . 4 0  and E = 0 . 4 0  ( . . . ) .  The curves for n ,  and n v coincide within error flags with the 
dashed line. 
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Fig. 3. Probabilities n :  (---)  and n ,  ( - - )  as a function of time for p =0.08, E=0.60 ,  and 
kT=0 .65 .  ( - - )  is the function m". 
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Fig. 4. Anisotropy n . - n  x versus time on a 15 x 15 x 20 system with the field turned on at 
t = 0  and switched of fa t  t = 3 x 104 MCS; the parameters  are p =0.12, k T =  0.65, E =  0.15 (- -) 
and p =0.08, k T = 0 . 5 0 ,  E = 0 , 1 5  ( - - ) ,  Note that for the lowest temperature ( k T = 0 . 5 0 ]  the 
anisolropy is largest. For  k T =  0.5 it takes also more time to reach the stat ionary state. 

ficiently strong fields, fast charge exchange in percolating clusters Icads to 
a huge current. For low fields the current is only due to the diffusion of 
very few isolated particles and thus is small. For low tcmpcralures wc never 
saw a percolating cluster split and disappear. For higher temperaturcs, near 
Ej(p, T), the percolating cluster can be destroyed temporarily by thermal 
motion. Then the current shows an intermittent behavior as in Fig. 6. 
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Electric current versus time. The lines are as in Fig. 2. 

822/62/3-4-8 



620 Aertsens and Naudts 

m 

0 
0 t0~ 5x10 4 

Fig. 6. Cu r r en l  versus l ime at  o = 0.08, kT ' - -0 .65 ,  and  E =  0.11 ill a 15 • 15 x 2(/ system. 

4.2. Comparison wi th  the Driven Lattice Gas Model  

At density p =0.5 and at low temperature the two- and three-dimen- 
sional driven lattice gas models remain anisotropic for E---, ~.~4.~ This 
result is also found ~71 in two dimensions for densities smaller than 0.5. 
Clearly, the behavior differs from that of the present model, which shows 
a gas phase in the presence of strong fields. For a better understanding of 
these differences we have studied also a version of the driven lattice gas 
model where, as in our model, the particles can jump to 18 neighboring 
sites instead of the usual six. We refer to the latter model as DLGI8. It 
reduces to the usual driven lattice gas model (DLG6) when jumps are 
allowed to nearest neighbors only. For p=0.08 ,  kT=0.65 ,  and E--, ~ 
both the polarized lattice gas and DLGI8  have a gas phase as in Fig. lc. 
The fact that allowing jumps to 6 instead of 18 neighboring sites leads to 
a completely different stationary state suggests that steric hindrance effects 
are essential in the formation of the strip phase. The obvious explanation 
is the following. At large E the motion of a particle along the direction of 
the field is not hindered by the attraction of other particles. Indeed, the 
electric potential always dominates the attraction forces. For a coordina- 
tion number six, the only site in the direction of the field is occupied with 
high probability. The situation changes if a particle is allowed to jump to 
next nearest neighbors as well. Then it has five sites instead of one to which 
it can jump driven by the field. In addition, the transverse component of 
the jump vector along diagonal directions (x z and y z) experiences a ran- 
dom driving field, which means that there is an increase of the effective 
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temperature in the direction orthogonal to the field. Thus, ordering is 
impossible and a gas phase results. For the sake of completeness we men- 
tion that both the polarized lattice gas with coordination number 18 and 
that with coordination number 6 have always a gas phase for E---, oo. This 
is explained by a reduced importance of the steric hindrance, since in the 
polarized lattice gas only half of the particles try to move in the direction 
of the field (the other half move in the opposite direction). One concludes 
that steric hindrance is the dominant effect in DLG6 and that its reduction 
by an increased effective temperature leads to the gas phase of DLG18 at 
E-~ ~zo. 

We compared also the cluster configurations of the polarized lattice 
gas, of model DLG6, and of model DLGI8 at p =0.08, kT=0.65, and for 
different values for the electric field E. It appears that at field strengths for 
which the polarized lattice gas already percolates, DLG6 and DLGI8 are 
still nearly isotropic. The explanation is that the electrostatic forces on both 
ends of a polarized cluster are opposite and try to separate both ends from 
each other, which results in an elongation of the cluster. In DLG6 and 
DLG18 the electrostatic force on every particle has the same direction and 
the elongation remains modest. Polarization, caused by the introduction of 
two opposite charges, is in fact a major difference between the driven and 
the polarized lattice gas. 

4.3. Electric Field Dependence 

The stationary values of the anisotropy parameters as a function of the 
electric field for p = 0.08 and kT= 0.65 are shown in Fig. 7. For the same 
parameters, the conductivities as a function of small fields are shown in 
Fig. 8, the electric currents in Fig. 9. From these figures one notes that for 
small fields the clusters are nearly isotropic (n, ~ n:). There is no percola- 
tion. At high field strength, the clusters elongate and the anisotropy of the 
system increases. Between Ef -0.1 and E---0.15 the current is intermittent. 
In this region the part of the time the system percolates increases with the 
field. For fields larger than "-,0.15 but smaller than -~0.62 the system per- 
colates permanently. Apart from the intermittent region, Ohm's law is 
fulfilled for E/kT~I  (see Fig. 7). For larger fields, the relation between 
current and field becomes highly nonlinear. If the electric field is larger 
than E2-~ 0.62, a gas phase is formed. In the gas, the clusters remain 
slightly elongated (n_ > nx). For the behavior of the parameter m" around 
E = 0, we refer to the discussion in Section 3. Note also that a change of the 
width of the system causes a shift of the fields Ej and E2. The size 
dependence of the simulations is discussed in Section 5. 

We now discuss the decrease of the anisotropy with increasing field in 
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Fig. 7. Cluster anisotropy as a function of electric field for p=0.08  and kT=0.65 on a 
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a shift of E~ and E2. 

O" 
0.6 

0.5 x/X~/x/~ ~x 

0/+ 
X 

03~- 
X 

O.2-  

0.1 

0.0 
0.0 0.1 

X X X , --..X. 

I I - -  

0.2 E 
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Fig. 9. Electric current as a function of the field E on a 15 • 15 x 20 system for hT= 0.65 and 
density p =0.08, p=0.12 (.,.), and p=0.16 (--). For density p=0.08 the current is shown 
for N=50 (--)  and N=20 (--). For p=0.12 and p =0.16 we took N=20. 

the percolating regime E 1 < E <  E2. The same effect has been observed in 
the driven lattice gas (see Fig. 10 of ref. 2) and the tentative explanation 
given there holds here, too. The electric field induces two opposing effects: 
(1} at low field strength there is a competition between the surface energy 
and the electric field potential, leading to elongation of the clusters; (2) 
once a percolating cluster is formed, the polarization disappears and the 
correlations along the field direction decrease. In addition, the strong elec- 
tric field facilitates the escape of particles from the cluster, which has the 
same effect as increasing the temperature. This is confirmed by a decrease 
of the number of particles in the percolating cluster. See Fig. 10, showing 
a configuration for an electric field E slightly below E2 (E2 "~ 0.75). Note 
the increased amount of isolated particles compared to Fig. lb. 

The electric current as a function of the electric field shows the same 
three regimes (see Fig. 9). Recall that N is the number of times that the 
charge exchange algorithm is executed after each completion of the par- 
ticle-hole exchange algorithm. By changing N, we can deduce the nature of 
the electric current. For one density Fig. 9 shows the electric current for 
two different values of N: N =  20 and N =  50. One sees clearly that the 
transition fields E~ and E2 do not depend on N. Below E, the electric 
current is independent of N. This confirms that the current is carried by dif- 
fusing particles. For fields E >  E~ and for which Ohm's law is valid, the 
current is proportional to N. This indicates it is mainly due to charge 
exchange. Note that the current decreases in the same region below E2, 
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Fig. 10. 
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Three-dimensional view of the particle configuration at p = 0.08, E = 0.60, kT = 0.60, 

t = 20000 MCS on a 15• 15x20 lattice, 

where also the anisotropy decreases. The explanation is again the lower 
number of particles in the percolating cluster. In the gas phase E > E2 the 
current is mainly but not exclusively due to particle diffusion. 

We checked that at density p=0.16  and in the gas phase (E>  E2) 
there is most of the time a percolating cluster (with respect to coordination 
number 18). However, this cluster is ramified and of a dynamic nature. 
This explains why the current is smaller than in the E <  E2 regime, but 
significantly larger than for E > E 2  at densities p=0.08  and p=0.12. 
Ramification of the percolating cluster reduces charge exchange in two 
ways: (i) the average number of neighbors decreases; the latter reduces the 
number of sites to which hopping is possible; (ii) at large fields, charges are 
trapped in dangling ends (see, e.g., ref. 37 and references quoted there). 

4.4. Phase D iagram 

The most important result of our simulations is the phase diagram of 
Fig. 11. Three stationary phases are found: (1) a gas phase for high tem- 
perature or high field; (2) an approximately isotropic two-phase region for 
low fields and intermediate temperature; (3) an anisotropic two-phase 
striplike region with a cylinder-shaped percolating cluster for intermediate 
field and temperature. In addition, we observe a region of intermittency at 
the higher temperature side of phase (3). This region is rather small and is 
not shown in Fig. 11, The separation line between the gas phase (1) and the 
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Fig. 11. Phase diagram for densities p=0.08 (+), p--0.12 (�9 and p=0.16 (,) on a 
15 x 15 x 20 system. The boundary between phases (1) and (2) has not been calculated, but 
for reasons of clarity it is drawn at its estimated position. The dotted line is fitted according 
to formula (14). 

isotropic region (2) has not been determined. It has been drawn in Fig. l l 
at the place where we suspect it to be. The fields E~(p, T) and E~(p, T) give 
the boundaries between phases (2) and (3), and between phases (1) and 
(3), respectively. We introduce the temperature T*(p)  by the condition 
E~(p, T * ) =  E2(p, T*). Its value as a function of density is found to be 

T*(p = 0.08) = 0.72 + 0.02 

T*(p = 0.12) =0.81 _+0.03 

T*(p = 0.16) = 0.87 _+ 0.02 

T, ( p  = 0 . 0 8 )  = 0.93 

T,.(p = 0.12)= 1.00 

T,.(p = 0.16) = 1.04 

For comparison we show also the phase separation temperature without 
electric field T,.(p) as calculated using the Pad6 approximation results by 
Essam and Fisher (36) and the value kT,~ 1.12 at density p = 0 . 5  (see 
ref. 35). The transition temperatures as found in the simulations at E = 0  
are considerably lower, c39) The effect is due to the fact that the simulations 
are done with a constant number of particles and not at constant pressure. 
However, the temperature T*(p) is still lower than the one observed by 
simulation in the absence of electric field. Finally, it is clear that the tem- 
perature T*(p) is sensitive to finite-size effects. 

Apparently, the electric field E2 is linear in the temperature T, at least 
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for low temperatures. This can be understood by thc following reasoning. 
At low temperature the probability that a particle leaves a cluster is very 
small except when it moves in the direction of the field. Let An denote the 
decrease in the number of nearest neighbors when the particle leaves the 
cluster. Then the change in energy is 4J~Jn- E. The probability to leave a 
cluster is roughly proportional to e x p [ - ( 4 J A n - E ) / k ~ T ]  and can be 
assumed in first instance to be constant along the line E2(p, T). Hence one 
obtains 

E2(p, T) = 4Jzln - c T (14) 

where c is a constant. For sufficiently low temperature An is independent 
of temperature. Hence a linear behavior is obtained (see Fig. I1). For 
p = 0.08 the fit gives An = 2.3 + 0.2. 

The increase of E~(p, T) with temperature is in agreement with the 
observed decrease of anisotropy with temperature (sec Fig. 12). It is a con- 
sequence of the competition between temperature and electric field. Onc 
sees also from Fig. 12 that m" changes continuously between low- and 
high-temperature phases due to the intermittent behavior in the vicinity of 
the E~(p, T)line. In the driven lattice gas, at densities p < 0.2 and E--, ~l~, 
the parameter m" jumps discontinuously when passing from phase (2) to 
phase (3). As expected, at constant field strength both n~ and n~ are 

1.0 

m" 

0.5 

0.0 
0.0 

\ .. 

\ ',.. 

1 I I I I _ _  

10 T 

Fig. 12. Plot  o f  m "  as a func t ion  o f  t e m p e r a t u r e  at  E = 0.15 for  p = 0.08 ( - - ) ,  p = 0 . !2  ( . - . ) ,  

a n d  p = 0 . 1 6  ( - - )  on  a 1 5 •  1 5 •  latt ice.  
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decreasing functions of temperature. Because of the increased anisotropy at 
lower temperatures, the difference n = - n ,  increases also when lowering the 
temperature (see Fig. 4). For small electric fields E <  E2(p, T) the behavior 
of n. and nx as a function of both temperature and electric field is similar 
to the two-dimensional driven lattice gas for p = 0.5 (see Fig. 10 of ref. 2). 

4.5. Temperature  Dependence of the Electric Current  

Figure 13 shows the conductivity in the limit of zero field E = 0. Above 
the phase separation temperature T,.(p) the conductivity is nearly constant 
and the Ohmic region extends to large E values. At low temperatures most 
of the particles condense and the conductivity drops to almost zero. 

The behavior of the conductivity versus field at different temperatures 
is shown in Fig. 14. For the highest temperature shown the strip phase is 
not entered and the conductivity is nearly constant. At lower temperatures 
one notes a huge increase of the current when passing through the strip 
phase. Note also that at sufficiently low temperatures intermittency dis- 
appears and the current is discontinuous near E~(p, T). 

Finally, Figure 15 shows the conductivity as a function of temperature 
at constant field E=0.15. For the same parameters, the quantity m" is 
shown in Fig. 12. For p=0 .16  the current starts to increase when the 

f 

O" 

Fig. 13. 
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Conductivity as a function of temperature on a 15x 15x20 lattice with density 
p = 0.08. 
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Fig. 14. Conduct iv i ty  versus electric field at p = 0.08 on a 15 x ! 5  • 20 lattice for different 
t e m p e r a t u r e s : k T = 0 . 6 0 ( . . . ) , k T = 0 . 6 5  ( . . . .  ) , k T = 0 , 7 0 (  ), and k T = 0 , 7 5  ( ). 

percolating cluster changes from ramified to compact. For p=0.08 the 
increase occurs at the moment that the percolating cluster appears. Note 
also that below phase separation the conductivity is approximately a linear 
function of temperature. One should not compare the slopes of both 
curves, since the simulations were done with N = 5 0  for #=0.08 and 
N = 2 0  for p=0.16. 
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Fig. 15. Electric current as a function of  temperature  on a 15 x 15 • 20 lattice for E =  0.15 
and densities p =0 .08  ( - - )  and  p = 0 . 1 6  (--) .  
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5. CONCLUSIONS 

The present paper introduces a lattice gas model in which the particles 
have charge either + 1 or - 1. Accordingly, they drift in opposite directions 
under the influence of an external electric field. In this aspect the model dif- 
fers from the driven lattice gas, where all particles move in the same direc- 
tion. In the present model charge separation occurs and leads to elongation 
of clusters of particles even at rather small values of the electric field. In the 
driven lattice gas one observes a dynamic transition to a striplike con- 
figuration of high- and low-density regions. A similar transition occurs in 
the present model for much lower values of the electric field precisely 
because of the elongation of the clusters facilitating the transition. 

A new feature of the present study is the use of a high coordination 
number (18) for the dynamics of particles and charges. Steric hindrance 
plays an important role in the driven lattice gas with coordination number 
6 and stabilizes the striplike configuration at large electric fields. With the 
coordination number of 18 the system stays in the gas phase for large 
electric fields down to low temperatures. For the present model the gas 
phase is observed at high fields, even with coordination number 6. 

A difficult aspect of the present study concerns the finite-size effects. 
We have simulated only the three-dimensional model. The system sizes are 
rather small (15 x 15 x 20 up to 20 • 20 x 60). Finite-size effects are in any 
case important, especially because the electric field leads to long-range 
correlations in the z direction. Indeed, percolation is reached as soon as the 
length of an elongated cluster equals the size of the system. In addition, 
because of periodic boundary conditions both ends of the elongated cluster 
touch each other at percolation. Finally, due to the small system size, only 
one percolating cluster is present. In a large system we expect that in the 
strip phase several percolating clusters span the system in the : direction. 
Such finite-size effects are of a quantitative nature and we do not expect 
any qualitative change of the phase diagram of Fig. I1. We checked that 
simulations for different system sizes ( 1 5 x 1 5 x 2 0 ,  1 5 x 1 5 x 4 0 ,  and 
2 0 x 2 0 x 6 0  at kT=0.60 ,  E=0.15,  and p=0 .08)  in all cases produce a 
similar stationary configuration (see Fig. lb) with an elongated cluster 
spanning the system in the z direction. 
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